Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833953

RESUMO

Epilepsy is a chronic condition characterized by recurrent spontaneous seizures. The interaction between astrocytes and neurons has been suggested to play a role in the abnormal neuronal activity observed in epilepsy. However, the exact way astrocytes influence neuronal activity in the epileptogenic brain remains unclear. Here, using the PTZ-induced kindling mouse model, we evaluated the interaction between astrocyte and synaptic function by measuring astrocytic Ca2+ activity, neuronal excitability, and the excitatory/inhibitory balance in the hippocampus. Compared to control mice, hippocampal slices from PTZ-kindled mice displayed an increase in glial fibrillary acidic protein (GFAP) levels and an abnormal pattern of intracellular Ca2+-oscillations, characterized by an increased frequency of prolonged spontaneous transients. PTZ-kindled hippocampal slices also showed an increase in the E/I ratio towards excitation, likely resulting from an augmented release probability of excitatory inputs without affecting inhibitory synapses. Notably, the alterations in the release probability seen in PTZ-kindled slices can be recovered by reducing astrocyte hyperactivity with the reversible toxin fluorocitrate. This suggests that astroglial hyper-reactivity enhances excitatory synaptic transmission, thereby impacting the E/I balance in the hippocampus. Altogether, our findings support the notion that abnormal astrocyte-neuron interactions are pivotal mechanisms in epileptogenesis.


Assuntos
Epilepsia , Excitação Neurológica , Camundongos , Animais , Pentilenotetrazol/efeitos adversos , Astrócitos/metabolismo , Epilepsia/metabolismo , Excitação Neurológica/metabolismo , Convulsões/metabolismo , Hipocampo/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373230

RESUMO

Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.


Assuntos
Comportamento Aditivo , COVID-19 , Doenças Cardiovasculares , Doenças do Sistema Nervoso , Humanos , Pandemias , COVID-19/complicações , Envelhecimento/metabolismo , Inflamação/complicações , Doenças do Sistema Nervoso/etiologia
3.
Biomolecules ; 13(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371467

RESUMO

Pannexin-1 (Panx1) hemichannel is a non-selective transmembrane channel that may play important roles in intercellular signaling by allowing the permeation of ions and metabolites, such as ATP. Although recent evidence shows that the Panx1 hemichannel is involved in controlling excitatory synaptic transmission, the role of Panx1 in inhibitory transmission remains unknown. Here, we studied the contribution of Panx1 to the GABAergic synaptic efficacy onto CA1 pyramidal neurons (PyNs) by using patch-clamp recordings and pharmacological approaches in wild-type and Panx1 knock-out (Panx1-KO) mice. We reported that blockage of the Panx1 hemichannel with the mimetic peptide 10Panx1 increases the synaptic level of endocannabinoids (eCB) and the activation of cannabinoid receptors type 1 (CB1Rs), which results in a decrease in hippocampal GABAergic efficacy, shifting excitation/inhibition (E/I) balance toward excitation and facilitating the induction of long-term potentiation. Our finding provides important insight unveiling that Panx1 can strongly influence the overall neuronal excitability and play a key role in shaping synaptic changes affecting the amplitude and direction of plasticity, as well as learning and memory processes.


Assuntos
Hipocampo , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Células Piramidais , Animais , Camundongos , Conexinas/genética , Conexinas/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Transmissão Sináptica
4.
Front Mol Neurosci ; 15: 1024034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385757

RESUMO

Synapse unsilencing is an essential mechanism for experience-dependent plasticity. Here, we showed that the application of the ligand Wnt-5a converts glutamatergic silent synapses into functional ones by increasing both α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) currents (IAMPA and INMDA, respectively). These effects were mimicked by the hexapeptide Foxy-5 and inhibited by secreted frizzled-related protein sFRP-2. INMDA potentiation was produced by increased synaptic potency, followed by an increase in the probability of release (Pr), even in the presence of 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX). At a longer time of Wnt-5a exposure, the Pr increments were higher in INMDA than in IAMPA. In the presence of NMDAR inhibitors, Wnt-5a-induced conversion was fully inhibited in 69.0% of silent synapses, whereas in the remaining synapses were converted into functional one. Our study findings showed that the Wnt-5a-activated pathway triggers AMPAR insertion into mammalian glutamatergic synapses, unsilencing non-functional synapses and promoting the formation of nascent synapses during the early postnatal development of the brain circuits.

5.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429074

RESUMO

Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.


Assuntos
Actinas , Conexinas , Animais , Camundongos , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo
6.
Front Mol Neurosci ; 15: 1020903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204135

RESUMO

Obesity is a pandemic associated with lifestyles changes. These include excess intake of obesogenic foods and decreased physical activity. Brain areas, like the lateral hypothalamus (LH), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been linked in both homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. Interestingly, these control systems are regulated by the lateral septum (LS), a relay of γ-aminobutyric (GABA) acid neurons (GABAergic neurons) that inhibit the LH and GABAergic interneurons of the VTA. Furthermore, the LS has a diverse receptor population for neurotransmitters and neuropeptides such as dopamine, glutamate, GABA and corticotropin-releasing factor (CRF), among others. Particularly, CRF a key player in the stress response, has been related to the development of overweight and obesity. Moreover, evidence shows that LS neurons neurophysiologically regulate reward and stress, although there is little evidence of LS taking part in homeostatic and hedonic feeding. In this review, we discuss the evidence that supports the role of LS and CRF on feeding, and how alterations in this system contribute to weight gain obesity.

7.
Neuroscience ; 456: 50-59, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828940

RESUMO

Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.


Assuntos
Plasticidade Neuronal , Sinapses , Potenciais de Ação , Colinérgicos , Hipocampo , Transmissão Sináptica
8.
Neurobiol Dis ; 146: 105132, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049315

RESUMO

Epilepsy is characterized by a progressive predisposition to suffer seizures due to neuronal hyperexcitability, and one of its most common co-morbidities is cognitive decline. In animal models of chronic epilepsy, such as kindling, electrically induced seizures impair long-term potentiation (LTP), deteriorating learning and memory performance. Astrocytes are known to actively modulate synaptic plasticity and neuronal excitability through Ca2+-dependent gliotransmitter release. It is unclear, however, if astroglial Ca2+ signaling could contribute to the development of synaptic plasticity alterations in the epileptic hippocampus. By employing electrophysiological tools and Ca2+ imaging, we found that glutamatergic CA3-CA1 synapses from kindled rats exhibit an impairment in theta burst (TBS) and high frequency stimulation (HFS)-induced LTP, which is accompanied by an increased probability of neurotransmitter release (Pr) and an abnormal pattern of astroglial Ca2+-dependent transients. Both the impairment in LTP and the Pr were reversed by inhibiting purinergic P2Y1 receptors (P2Y1R) with the specific antagonist MRS2179, which also restored the spontaneous and TBS-induced pattern of astroglial Ca2+-dependent signals. Two consecutive, spaced TBS protocols also failed to induce LTP in the kindled group, however, this impairment was reversed and a strong LTP was induced when the second TBS was applied in the presence of MRS2179, suggesting that the mechanisms underlying the alterations in TBS-induced LTP are likely associated with an aberrant modulation of the induction threshold for LTP. Altogether, these results indicate that P2Y1R inhibition rescues both the pattern of astroglial Ca2+-activity and the plastic properties of CA3-CA1 synapses in the epileptic hippocampus, suggesting that astrocytes might take part in the mechanisms that deteriorate synaptic plasticity and thus cause cognitive decline in epileptic patients.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Epilepsia/fisiopatologia , Plasticidade Neuronal/fisiologia , Receptores Purinérgicos P2Y1/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia
9.
Invest Ophthalmol Vis Sci ; 61(3): 3, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150246

RESUMO

Purpose: In the mammalian retina, cannabinoid type 1 receptors (CB1Rs) are well-positioned to alter inhibitory synaptic function from amacrine cells and, thus, might influence visual signal processing in the inner retina. However, it is not known if CB1R modulates amacrine cells feedback inhibition at retinal bipolar cell (BC) terminals. Methods: Using whole-cell voltage-clamp recordings, we examined the pharmacological effect of CB1R activation and inhibition on spontaneous inhibitory postsynaptic currents (sIPSCs) and glutamate-evoked IPSCs (gIPSCs) from identified OFF BCs in light-adapted rat retinal slices. Results: Activation of CB1R with WIN55212-2 selectively increased the frequency of GABAergic, but not glycinergic sIPSC in types 2, 3a, and 3b OFF BCs, and had no effect on inhibitory activity in type 4 OFF BCs. The increase in GABAergic activity was eliminated in axotomized BCs and can be suppressed by blocking CB1R with AM251 or GABAA and GABAρ receptors with SR-95531 and TPMPA, respectively. In all OFF BC types tested, a brief application of glutamate to the outer plexiform layer elicited gIPSCs comprising GABAergic and glycinergic components that were unaffected by CB1R activation. However, blocking CB1R selectively increased GABAergic gIPSCs, supporting a role for endocannabinoid signaling in the regulation of glutamate-evoked GABAergic inhibitory feedback to OFF BCs. Conclusions: CB1R activation shape types 2, 3a, and 3b OFF BC responses by selectively regulate GABAergic feedback inhibition at their axon terminals, thus cannabinoid signaling might play an important role in the fine-tuning of visual signal processing in the mammalian inner retina.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Bipolares da Retina/fisiologia , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Animais , Benzoxazinas/farmacologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Endocanabinoides/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Ácido Glutâmico/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Técnicas de Patch-Clamp/métodos , Ácidos Fosfínicos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/efeitos dos fármacos , Retina , Células Bipolares da Retina/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Neuroscience ; 428: 242-251, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31917346

RESUMO

Growing evidence indicates that GABAergic interneurons play a pivotal role to generate brain oscillation patterns, which are fundamental for the mnemonic processing of the hippocampus. While acetylcholine (ACh) is a powerful modulator of synaptic plasticity and brain function, few studies have been focused on the role of cholinergic signaling in the regulation of GABAergic inhibitory synaptic plasticity. We have previously shown that co-activation of endocannabinoids (CB1R) and muscarinic receptor (mAChR) in hippocampal interneurons can induce activity-dependent GABAergic long-term depression in CA1 pyramidal neurons. Here, using electrophysiological and pharmacological approaches in acute rat hippocampal slices, we show that activation of cholinergic receptors followed by either high-frequency stimulation of Schaeffer collaterals or exogenous activation of metabotropic glutamate receptor (mGluR) induces a robust long-term potentiation at GABAergic synapses (iLTP). These forms of iLTP are blocked by the M1 type of mAChR (MR1) or by the group I of mGluR (mGluR1/5) antagonists. These results suggest the existence of spatiotemporal cooperativity between cholinergic and glutamatergic pathways where activation of mAChR serves as a metaplastic switch making glutamatergic synapses capable to induce long-term potentiation at inhibitory synapses, that may contribute to the modulation of brain mechanisms of learning and memory.


Assuntos
Neurônios GABAérgicos , Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Humanos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
11.
Front Cell Neurosci ; 13: 372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481877

RESUMO

Schizophrenia (SZ) is associated with changes in the structure and function of several brain areas. Several findings suggest that these impairments are related to a dysfunction in γ-aminobutyric acid (GABA) neurotransmission in brain areas such as the medial prefrontal cortex (mPFC), the hippocampus (HPC) and the primary auditory cortex (A1); however, it is still unclear how the GABAergic system is disrupted in these brain areas. Here, we examined the effect of ketamine (Ket) administration during late adolescence in rats on inhibition in the mPFC-, ventral HPC (vHPC), and A1. We observe that Ket treatment reduced the expression of the calcium-binding protein parvalbumin (PV) and the GABA-producing enzyme glutamic acid decarboxylase 67 (GAD67) as well as decreased inhibitory synaptic efficacy in the mPFC. In addition, Ket-treated rats performed worse in executive tasks that depend on the integrity and proper functioning of the mPFC. Conversely, we do not find such changes in vHPC or A1. Together, our results provide strong experimental support for the hypothesis that during adolescence, the function of the mPFC is more susceptible than that of HPC or A1 to NMDAR hypofunction, showing apparent structure specificity. Thus, the impairment of inhibitory circuitry in mPFC could be a convergent primary site of SZ-like behavior during the adulthood.

12.
Acta Neuropathol Commun ; 7(1): 147, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514753

RESUMO

The coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75NTR pan-neurotrophin receptor. Even though p75NTR targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75NTR inhibition at the mature neuromuscular junction have not been elucidated. We performed quantitative neuroanathomical analyses of the neuromuscular junction in p75NTR null mice by laser confocal and electron microscopy, which were complemented with electromyography, locomotor tests, and pharmacological intervention studies. Mature neuromuscular synapses of p75NTR null mice show impaired postsynaptic organization and ultrastructural complexity, which correlate with altered synaptic function at the levels of nerve activity-induced muscle responses, muscle fiber structure, force production, and locomotor performance. Our results on primary myotubes and denervated muscles indicate that muscle-derived p75NTR does not play a major role on postsynaptic organization. In turn, motor axon terminals of p75NTR null mice display a strong reduction in the number of synaptic vesicles and active zones. According to the observed pre and postsynaptic defects, pharmacological acetylcholinesterase inhibition rescued nerve-dependent muscle response and force production in p75NTR null mice. Our findings revealing that p75NTR is required to organize mature neuromuscular junctions contribute to a comprehensive view of the possible effects caused by therapeutic attempts to target p75NTR.


Assuntos
Neurônios Motores/fisiologia , Junção Neuromuscular/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Neurônios Motores/ultraestrutura , Junção Neuromuscular/ultraestrutura , Receptores de Fator de Crescimento Neural/genética , Vesículas Sinápticas/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 115(27): 7123-7128, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915053

RESUMO

Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Córtex Pré-Frontal/citologia
14.
Nutr Neurosci ; 21(8): 556-569, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28482757

RESUMO

While chronic stress induces dendritic atrophy in the hippocampus and impairs learning and memory, supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) is known to improve learning and memory of control rats. Whether n-3 PUFA supplementation improves dendritic morphology, synaptic transmission, and memory of chronically stressed rats remains unknown. In this work, we randomly assigned male Sprague-Dawley rats in four experimental groups: two unsupplemented groups, control and stress, and two supplemented groups with n-3 PUFA (DHA and EPA mix), control + n-3 PUFA and stress + n-3 PUFA. Dendritic morphology and synaptic transmission in the hippocampus were evaluated by Golgi stain and patch-clamp tools, respectively. The Y-maze and Morris water maze were used to analyze the effects of chronic stress on memory. Supplementation with n-3 PUFA improved dendritic architecture and restored the frequency of inhibitory post-synaptic currents of hippocampal pyramidal neurons of rats from stress group. In addition, n-3 PUFA supplementation improved spatial memory. Our results demonstrate that n-3 PUFA supplementation had three beneficial effects on stressed rats: prevented or compensated dendritic atrophy in CA3; restored the probability of GABA release in CA1; and improved spatial memory. We argue that n-3 PUFA supplementation can be used in treating stress-related psychiatric disorders such as depression and anxiety.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Nootrópicos/uso terapêutico , Estresse Fisiológico , Estresse Psicológico/prevenção & controle , Animais , Comportamento Animal , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Comportamento Exploratório , Óleos de Peixe/uso terapêutico , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/prevenção & controle , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Distribuição Aleatória , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Restrição Física/psicologia , Memória Espacial , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Transmissão Sináptica
15.
Brain ; 140(12): 3252-3268, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155979

RESUMO

The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.


Assuntos
Doença de Alzheimer/genética , Comportamento Animal , Cognição , Proteína 4 Homóloga a Disks-Large/genética , Repressão Epigenética , Hipocampo/metabolismo , Memória , Ativação Transcricional , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Epigênese Genética , Código das Histonas , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Dedos de Zinco
16.
Elife ; 52016 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-28012274

RESUMO

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.


Assuntos
Astrócitos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , GABAérgicos/metabolismo , Hipocampo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Camundongos Knockout , Rede Nervosa , Redes Neurais de Computação , Técnicas de Patch-Clamp , Receptores de GABA-A , Receptores de GABA-B , Receptores de Glutamato Metabotrópico/metabolismo
17.
Neural Plast ; 2016: 8607038, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27006834

RESUMO

Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Plasticidade Neuronal , Transmissão Sináptica , Animais , Astrócitos/fisiologia , Ácido Glutâmico/fisiologia , Humanos , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia
18.
Curr Pharm Des ; 22(14): 2004-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26818867

RESUMO

The cholinergic activity in the brain is fundamental for cognitive functions. The modulatory activity of the neurotransmitter acetylcholine (ACh) is mediated by activating a variety of nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (mAChR). Accumulating evidence indicates that both nAChR and mAChRs can modulate the release of several other neurotransmitters, modify the threshold of long-term plasticity, finally improving learning and memory processes. Importantly, the expression, distribution, and/or function of these systems are altered in several neurological diseases. The aim of this review is to discuss our current knowledge on cholinergic receptors and their regulating synaptic functions and neuronal network activities as well as their use as targets for the development of new and clinically useful cholinergic ligands. These new therapies involve the development of novel and more selective cholinergic agonists and allosteric modulators as well as selective cholinesterase inhibitors, which may improve cognitive and behavioral symptoms, and also provide neuroprotection in several brain diseases. The review will focus on two nAChR receptor subtypes found in the mammalian brain and the most commonly targeted in drug discovery programs for neuropsychiatric disorder, the ligands of α4ß2 nAChR and α7 nAChRs.


Assuntos
Inibidores da Colinesterase/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Inibidores da Colinesterase/química , Humanos , Ligantes , Doenças do Sistema Nervoso/metabolismo , Agonistas Nicotínicos/química
19.
Neurobiol Dis ; 86: 109-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626079

RESUMO

The dystrophin-associated glycoprotein complex (DGC) that connects the cytoskeleton, plasma membrane and the extracellular matrix has been related to the maintenance and stabilization of channels and synaptic receptors, which are both essential for synaptogenesis and synaptic transmission. The dystrophin-deficient (mdx) mouse model of Duchenne muscular dystrophy (DMD) exhibits a significant reduction in hippocampal GABA efficacy, which may underlie the altered synaptic function and abnormal hippocampal long-term plasticity exhibited by mdx mice. Emerging studies have implicated Wnt signaling in the modulation of synaptic efficacy, neuronal plasticity and cognitive function. We report here that the activation of the non-canonical Wnt-5a pathway and Andrographolide, improves hippocampal mdx GABAergic efficacy by increasing the number of inhibitory synapses and GABA(A) receptors or GABA release. These results indicate that Wnt signaling modulates GABA synaptic efficacy and could be a promising novel target for DMD cognitive therapy.


Assuntos
Hipocampo/metabolismo , Hipocampo/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Neurônios/fisiologia , Via de Sinalização Wnt , Animais , Diterpenos/administração & dosagem , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
20.
Glia ; 63(9): 1507-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980474

RESUMO

The fine-tuning of synaptic transmission by astrocyte signaling is crucial to CNS physiology. However, how exactly astroglial excitability and gliotransmission are affected in several neuropathologies, including epilepsy, remains unclear. Here, using a chronic model of temporal lobe epilepsy (TLE) in rats, we found that astrocytes from astrogliotic hippocampal slices displayed an augmented incidence of TTX-insensitive spontaneous slow Ca(2+) transients (STs), suggesting a hyperexcitable pattern of astroglial activity. As a consequence, elevated glutamate-mediated gliotransmission, observed as increased slow inward current (SICs) frequency, up-regulates the probability of neurotransmitter release in CA3-CA1 synapses. Selective blockade of spontaneous astroglial Ca(2+) elevations as well as the inhibition of purinergic P2Y1 or mGluR5 receptors relieves the abnormal enhancement of synaptic strength. Moreover, mGluR5 blockade eliminates any synaptic effects induced by P2Y1R inhibition alone, suggesting that the Pr modulation via mGluR occurs downstream of P2Y1R-mediated Ca(2+)-dependent glutamate release from astrocyte. Our findings show that elevated Ca(2+)-dependent glutamate gliotransmission from hyperexcitable astrocytes up-regulates excitatory neurotransmission in epileptic hippocampus, suggesting that gliotransmission should be considered as a novel functional key in a broad spectrum of neuropathological conditions.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiopatologia , Cálcio/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cátions Bivalentes/metabolismo , Doença Crônica , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Imuno-Histoquímica , Excitação Neurológica , Masculino , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA